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Dynamical instabilities of quasistatic crack propagation under thermal stress
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We address the theory of quasistatic crack propagation in a strip of glass that is pulled from a hot oven
towards a cold bath. This problem had been carefully studied in a number of experiments that offer a wealth
of data to challenge the theory. We improve upon previous theoretical treatments in a number of ways. First,
we offer a technical improvement of the discussion of the instability towards the creation of a straight crack.
This improvement consists in employing Pade´ approximants to solve the relevant Wiener-Hopf factorization
problem that is associated with this transition. Next we improve the discussion of the onset of oscillatory
instability towards an undulating crack. We offer a way of considering the problem as a sum of solutions of a
finite strip without a crack and an infinite medium with a crack. This allows us to present a closed form
solution of the stress intensity factors in the vicinity of the oscillatory instability. Most importantly we develop
a dynamicaldescription of the actual trajectory in the regime of oscillatory crack. This theory is based on the
dynamical law for crack propagation proposed by Hodgdon and Sethna. We show that this dynamical law
results in a solution of the actual crack trajectory in post-critical conditions; we can compute from first
principles the critical value of the control parameters, and the characteristics of the solution such as the
wavelength of the oscillations. We present detailed comparison with experimental measurements without any
free parameters. The comparison appears quite excellent. Finally we show that the dynamical law can be
translated to an equation for the amplitude of the oscillatory crack; this equation predicts correctly the scaling
exponents observed in experiments.

DOI: 10.1103/PhysRevE.68.036601 PACS number~s!: 46.25.Hf, 62.20.Mk, 81.40.Np
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I. INTRODUCTION

In 1993 Yuse and Sano reported a simple experimen
fracture in glass@1# that nevertheless has attracted great
tention from the fracture community. The experiment exa
ined a strip of glass pulled at constant velocityv from an
oven into water, cf. Fig. 1. At small enough velocity nothin
happens. A first critical velocity heralds the onset of
straight crack, whereas exceeding a second critical velo
results in an oscillatory crack. Finally, at sufficiently hig
velocities the crack pattern exhibits multiple fractures a
disorder. The reason for the high interest in this relativ
simple experiment is, of course, that it offers a challenge
the theoretical description of fracture processes. Being es
tially a ‘‘quasistatic’’ process, as the velocityv is very much
smaller than the Rayleigh speed, the fracture process he
free of many of the complications arising in truly dynam
fracture @2#. Nevertheless, in the absence of a microsco
theory of the ‘‘process zone’’~how materials actually break!
even the dynamics of quasistatic crack propagation in br
materials remains a debatable issue.

The lack of dynamical theory for the cracking proce
does not hinder the understanding of the onset ofstraight
cracks in the above experiment. Indeed, already in the y
following the original experimental observations, Marder
up the equations describing the effect of the temperature
on the elastic theory of the material, and presented a qu
tative description of the onset of straight cracks@3#. From the
quantitative point of view this treatment was lacking, in p
ticular the fracture energy turned out to be strongly veloc
dependent against physical intuition. The tools employed
1063-651X/2003/68~3!/036601~13!/$20.00 68 0366
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Marder did not allow however a correct prediction of th
characteristics of oscillatory crack propagation. The next
cisive theoretical step was taken by Adda-Bedia and Pom
@4#. These authors not only reproduced Marder’s resu
for straight cracks, but also developed a successful crite
for the secondary instability to oscillatory cracks. Th
employed the universal form of the near-tip stress ten
field, i.e.,

s i j ~r ,u!5
K I

A2pr
S i j

I ~u!1
K II

A2pr
S i j

II ~u!. ~1!

Here K I and K II are the ‘‘stress intensity factors’’ with re
spect to the opening and shear modes, whereasS i j

I (u) and
S i j

II (u) are universal angular functions common to all co
figurations and loading conditions. Adda-Bedia and Pom

FIG. 1. Schematic representation of the experiment: a thin g
plate is pulled at a velocityv away from a heater into a cold bath
The control parameters are the temperature difference betwee
oven and the waterDT, the pulling velocityv, the spatial separa
tion between the thermal bathsh, and the width of the plate 2b.
©2003 The American Physical Society01-1
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invoked the well-known and extensively used ‘‘principle
local symmetry’’ @6#, which states that the path taken by
crack in brittle homogeneous isotropic material is such t
the local stress field at the tip of the crack is of mode I ty
annullingK II . The considerations in Ref.@4# led to the con-
clusion that the appearance of a negativeK II for positive
deviations from straight trajectory~or positiveK II for nega-
tive deviations! was tantamount to the onset of the oscil
tory instability. Nevertheless, these authors did not offe
careful quantitative comparison against the experime
known at the time. Their prediction of the fracture ener
and the wavelength of oscillations differed significantly fro
the experimental values.

In light of these results, we should explain at this po
why do we feel that further theory is called for. First, w
point out that ‘‘principle of local symmetry’’ is hardly a dy
namical theory. It can predict an instability, but taken lite
ally would only agree with a fracture path that has sh
kinks. It cannot be employed to predict the actual traject
of a slowly moving crack when the latter is not straigh
Second, since the theoretical works cited above there h
been additional experimental studies of this very same p
lem @7–10#, offering a wealth of data to challenge the theo
a challenge that had not been picked up by the theor
Last, but not least, we feel that we can improve on a num
of technical issues tackled by previous authors; these wil
spelled out in the sequel, hopefully gratifying the dilige
reader as we go along.

From the conceptual point of view we offer a point
departure from previous treatments by adopting adynamical
description of the crack development. In this we follo
Hodgdon and Sethna@11# who have built upon the principle
of local symmetry, using standard theoretical methods
reach a dynamical law for crack propagation which is giv
by

]rt ip

]t
5v t̂,

] t̂

]t
52 f K IIn̂, ~2!

wheret̂ andn̂ are the tangent and the normal to the crack
respectively, andf .0 is a material function that we assum
to be nearly independent oft̂ and n̂ in the quasistatic limit.
This law predicts adifferentiablecrack path such thatK II is
reduced. We will demonstrate that this law of motion pr
vides us with predictions that are in excellent agreement w
the characteristics of the crack trajectory in the oscillat
regime. We believe that this is the first context in which E
~2! are compared against a challenging set of experime
data; the comparison appears quite favorable.

In Sec. II we discuss, facing the danger of being super
ous, the problem of the primary instability leading to
straight crack propagation once more. This instability h
been correctly treated in Refs.@3,4#, but we offer a technica
improvement in the handling of the Wiener-Hopf factoriz
tion problem that is the basis of the solution. Using rec
03660
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mathematical advances@12# we use Pade´ approximants to
significantly improve the treatment. Since the results of t
improved treatment are relied upon in our solution of t
oscillatory instability, we present the theory for the straig
crack in some detail. Section III introduces the main resu
of our study in the context of the secondary instability
oscillatory cracks. Using the dynamical law Eq.~2! we show
that as one crosses the second critical value of the param
the solution of the equations changes its nature. We solve
equation near the onset of the oscillatory instability and c
culate the critical values of the control parameters, the wa
length of oscillations, and the material functionf. Although
our criterion for the oscillatory instability is in agreeme
with Refs.@4,5# ~which was based on the ‘‘principle of loca
symmetry’’!, we can go considerably further in describin
the actual dynamics in the oscillatory regime. In particu
we present a quantitative comparison with the experime
Our handling of the oscillatory instability includes also
technical improvement on the analysis of Ref.@4#; the latter
needed a separate Wiener-Hopf problem for every orde
the amplitude of the perturbation. In our calculation we d
rive a new expression forK II to leading order in the ampli-
tude of the oscillations, an expression that requires a solu
of only one Wiener-Hopf problem. This simplification i
achieved by presenting a different way to decompose
straight crack problem into a singular and a nonsingular p
and then using a classical result of Cotterell and Rice@13#. A
crucial step in the calculation is the Wiener-Hopf factoriz
tion, for which we apply the method of solution based
Padéapproximants@12#. Employing the dynamical law of
crack-tip propagation we calculate the critical exponents
the transition and compare them with the experimental d
Section IV offers a summary and concluding remarks.

II. THE STRAIGHT CRACK

A. Preliminaries

By varying the experimental control parameters one v
ies the amount of elastic energy stored in the glass plate.
can choose various paths in parameter space; in this work
adopt the scheme of Ref.@9#, fixing the values ofDT, h, and
v. The growth state depends then on the plate’s width 2b:
for small enough values of the width a seeded crack does
grow; for a width greater than a critical valueLc , a crack,
whose tip penetrates a length, away from the cold bath,
moves at a velocity2v. This crack is stationary in the labo
ratory frame of reference and is stable as long as the widt
smaller than another critical valueLosc. Above this value the
crack becomes unstable and exhibits an oscillatory lat
motion with a well-defined amplitude and wavelength, s
traveling at a velocity2v. As the width is further increased
the propagation becomes less and less regular.

The no crack–straight crack propagation transition is w
understood and the agreement with the experimental da
favorable@7#. In this case the propagation is pure mode I a
the transition is governed by the following Irwin relation:

KI
2

E
5G, ~3!
1-2
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whereG is the fracture energy which is a material prope
andE is Young’s modulus. In this section we address ag
this problem and describe the formal solution. The merit
our treatment will be in providing a detailed scheme for p
forming the Wiener-Hopf factorization in a different way.

B. The formulation of the problem

Imagine the glass plate as in Fig. 1 with a straight cra
penetrating into the glass from the water side. We choos
coordinate system such thatx50 is at the crack tip~marking
the water level atx52,, where, is the penetration depth o
the straight crack!. The y coordinate spans the interva
@2b,b#. The condition for mechanical equilibrium unde
plane stress conditions caused by a nonuniform tempera
field reads

¹2¹2x~x,y!52EaT¹2T~x!, ~4!

whereaT is the thermal expansion coefficient andx is the
Airy potential which is related to the stress tensor by

sxx5
]2x

]y2
, syy5

]2x

]x2
, sxy52

]2x

]x]y
. ~5!

Using the symmetry of the problem we state the bound
conditions as follows:

syy~x,6b!5sxy~x,6b!5sxy~x,0!50, ~6!

syy~x,0!50 for x<0, uy~x,0!50 for x>0. ~7!

Fourier transforming Eq.~4! in the x direction and focusing
on the upper half plate one obtains@3# the following Wiener-
Hopf equation@14#:

ŝyy~k,0!52F~k!ûy~k,0!1D,~k! ~8!

with

F~k!5Ek
sinh2~kb!2kb2

sinh~2kb!12kb
, ~9!

D,~k!52EaTT̂,~k!
@12cosh~kb!#@sinh~kb!2kb#

sinh~2kb!12kb
,

~10!

where one still has to obey the boundary conditions of
~7!. Note that the subscript, denotes the transformationx
→x1, in the temperature field such that the origin of t
coordinates system is at the tip of the crack. For con
nience, from now on, we rescale all lengths in the probl
by the half-widthb.

Writing F(k)5F2(k)/F1(k), whereF2(k) has neither
zeros nor singularities for Im(k),0, andF1(k) has neither
zeros nor singularities for Im(k).0, the Wiener-Hopf
method@14# results in
03660
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ûy~k,0!5
1

F2~k!
E

2`

0

dx̃F E
2`

` dk̃

2p
D,~ k̃!F1~ k̃!e2 i k̃ x̃Geikx̃.

~11!

From this solution one can extract@4# the mode I stress in-
tensity factor introduced in Eq.~1!,

KI~DT,v,b,h!5E
2`

` dk

2p
D,~k!F1~k!. ~12!

Note that if the fracture energyG is known then the mode
stress intensity factor characterizes completely the no cra
straight crack transition.K I is a positive quantity and is dif-
ferent from zero, as a function of,, only on a scale of the
order of b. To calculate this quantity we need first to solv
for the temperature field and second to provide a method
accomplishing the Wiener-Hopf factorization.

C. The temperature field

The nonuniform temperature field induces the stress fi
in the elastic plate. In this section we solve for the tempe
ture field and study its properties. For simplicity, we set t
zero of the coordinates system at the cooling front leve
avoid, dependence which is unnecessary in the present
text. For later calculations we will use the aforemention
transformation to put back the, dependence.

In the frame of reference of the plate the temperature fi
obeys the heat equation

]T

]t
5D¹2T ~13!

with the boundary conditions

¹W T•nW 50,

T~x50!5T,

T~x5h!5T1DT. ~14!

Here D.0.47 mm2/sec is the diffusion coefficient of the
glass,h is the distance between the cold bath and the hea
and nW is the unit vector normal to the boundary of th
domain.

This equation can be simplified for the straight crack co
figuration, for which there is noy dependence, by looking fo
a stationary solution in the laboratory frame of reference,
the formT(x2vt). This solution obeys the stationary diffu
sion equation

¹2T1
1

dth

]T

]x
50, ~15!

wheredth5D/v is the thermal diffusion length. The exac
solution of this equation is

T~x!5DTF 12e2x/dth

12e2h/dth
u~x!u~h2x!1u~x2h!G . ~16!
1-3
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We can identify two distinct regimes, as shown in Fig.
The first one, at low velocities, is the diffusive regime,
which the temperature field is controlled by the spatial se
ration of the thermal bathsh. The second one, at higher ve
locities, is the advective regime, in which the temperat
field is controlled by the thermal diffusion lengthdth . Actu-
ally, there is a third regime, at still higher velocities, in whic
the temperature field is controlled by the thickness of
plate. Note that we assumed that the temperature is unif
along this dimension and therefore the breakdown of
assumption in this regime leads to a three-dimensional p
lem, which is outside the scope of our two-dimension
model.

The temperature field enters the problem through the t
2EaT¹2T(x) of the inhomogeneous Bi-Laplace equatio
This term is sensitive only to variations of the temperat
gradient, i.e., to the curvature of the thermal field. In Eq.~16!
we considered a finite spatial separation between the the
baths, but assumed perfect thermal baths, an assumption
leads to a discontinuity of the gradient near the baths. T
discontinuity results in incorrect estimates of the stress fi
since at low velocities~see Fig. 2! the only gradient varia-
tions are in these regions, we cannot expect a very g
quantitative agreement with the experiment for low velo
ties. At higher velocities, there is a significant curvature
side the glass, so we expect a better quantitative agree
with the experiment. In Ref.@9# the temperature field wa
measured and found to vary smoothly near the baths du
the finite impedances of the baths. In the absence of
experimental data of the measured temperature field we
use the ideal baths approximation.

D. The Wiener-Hopf factorization

The crucial element in the solution is the Wiener-Ho
factorization of the known kernelF(k). Generally it is not

FIG. 2. The calculated temperature distribution inside the g
plate. We can identify two distinct regimes—the diffusive regime
low velocities (v50.05 mm/sec in the lower curve! and the advec-
tive regime at higher velocities (v50.3 mm/sec, and v
50.5 mm/sec in the upper two curves!. These curves should b
compared with the measured temperature field in Ref.@9#.
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possible to find anexactfactorization, so one tries an approx
imantF̃(k).F(k) that can be exactly factorized. This can b
made rigorous following a recently proven theorem@12#
which establishes the closeness of the product factors
F̃(k) to those ofF(k) in their region of regularity ifF̃(k)
.F(k) for all kPD, whereD is the strip of analyticity of
F(k). A commonly followed first step in findingF̃(k) is to
examine the behavior ofF(k) near zero and6`,

F~k!→6
k

2
as k→6`, ~17!

F~k!→ k4

12
as k→60. ~18!

A standard approach to finding a good factorization
then to seek a functionf(k) that reproduces the asymp
totic behavior ofF(k) and to correct it by a ratio of two
polynomials

F̃~k!5f~k!
k41ak21b

k41gk21b
, ~19!

where, for example,

f~k!5
k4

A4k61144
, ~20!

and a,b,g are free parameters that should be chosen a
best fit F̃(k) to F(k). In principle, one can use higher orde
polynomial ratio to achieve greater accuracy. The disadv
tage of this approach is that the positions of the poles
zeros are not well controlled and that the convergence be
ior of the process is not clear.

In our work we follow a new method developed in Re
@12#. In the heart of this approach lies the use of Pade´ ap-
proximants. An@N/M # approximant ofF(k) is written as

F̃~k!.
PN~k!

QM~k!
, ~21!

where

PN~k!5a01a1k1a2k21•••1aNkN, ~22!

QM~k!511b1k1b2k21•••1bMkM. ~23!

The coefficientsan ,bn are determined from the Taylor
series expansion ofF(k) at any regular point. Let us take th
expansion point to bek50, so

F~k!5 (
n50

`

cnkn, ~24!

wherecn are known. In order to solve for the unknown c
efficients one should set

s
t

1-4
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PN~k!

QM~k!
1O~kN1M11!5 (

n50

`

cnkn ~25!

to obtain a set of linear equations@12#. In this method one
approximates directly the factorization and the process
completely algorithmic. Note that since in practice one u
the truncated series ofF(k) it is not possible to approximat
directly the product factors for arbitrary largek8s. In order to
overcome this difficulty we should find the asymptotic for
of the factorization and use it as a boundary condition for
Padéapproximants. The asymptotic factorization is found
noticing that the zeros and poles ofF(k), which are, respec
tively, the solutions of the equations

sinh2~wn!2wn
250, ~26!

sinh~2zn!22zn50 ~27!

have the property that if, for example,wn is a zero ofF(k)
thenw̄n , 2wn and2w̄n are also zeros. The same holds f
the poles. Therefore, considering the solutions of Eqs.~26!
and ~27! only in the first quadrant, we obtain

F~k!5
k4

12

)
n51

` S 12
k

wn
D S 11

k

wn
D S 12

k

w̄n
D S 11

k

w̄n
D

)
n51

` S 12
k

zn
D S 11

k

zn
D S 12

k

z̄n
D S 11

k

z̄n
D .

~28!

From here it follows that

F2~k!5
k2

A12

)
n51

` S 12
k

wn
D S 11

k

w̄n
D

)
n51

` S 12
k

zn
D S 11

k

z̄n
D 5

1

F1~2k!
.

~29!

Using this relation and the asymptotic relation of Eq.~17! we
conclude that the asymptotic factorization is

F1~k!→A 2

2 ik
, F2~k!→Aik

2
. ~30!

We should choose the Pade´ approximants to match thes
asymptotic forms. This is achieved by squaring the origi
kernelF(k), to obtain an even function ofk that behaves as
k2 as uku→`. Hence, we can derive an@(N12)/N# Padé

approximation es

03660
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F2~k!.
PN12~k!

QN~k!
, ~31!

with N even. This approximation containsN12 zeros andN
poles which become, after taking the square root,N21
branch points in the upper half-plane andN21 branch points
in the lower half-plane. The relative error,„F2(k)/@F1(k)
2F(k)#…/F(k), for N528 is shown in Fig. 3. The
asymptotic matching ofF1(k) to A2/(2 ik) is shown in Fig.
4.

E. The determination of the fracture energyG

In Sec. III we develop a theory for the oscillatory inst
bility and compare it with the experimental results. A cruc
parameter in that theory, as here, is the fracture energyG. We
can extract the fracture energy from the experimental thre
old for propagation, cf. Eq.~3!. The relevant measuremen
was reported in Ref.@7# in which a linear elastic model iden
tical to ours was used to extract the fracture energy.G was
chosen to best fit the experimental data of the onset of
straight crack propagation. It was found thatG depends
weakly on the velocity when the idealized thermal profi
was employed;G turned out velocity independent for th
actual thermal profile measured in the experiment. Since
do not have the experimental data for the thermal profile
will use, for consistency, a typical value of the former, i.
G.3.75 J/m2. This value should be compared to Fig. 5
Ref. @7#.

III. THE STRAIGHT TO OSCILLATORY CRACK
TRANSITION

Solving a dynamic fracture problem in the quasista
limit consists of~i! solving the equilibrium equations for th
stress field together with a given set of boundary conditio
at the sample boundaries and on the~a priori unknown and
evolving! crack boundary and~ii ! employing a dynamical
principle to evolve the crack. A proper solution determin

FIG. 3. The relative error,@F2(k)/F1(k)2F(k)#/F(k), as a
function of k.
FIG. 4. The real~left-hand panel! and imagi-
nary ~right-hand panel! parts of F1(k) ~lower
curve in both panels! compared to the real and
imaginary parts ofA2/(2 ik), as a function ofk.
1-5
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the correct shape of the crack as a function of time. Clea
the predictions of the employed crack growth law should
consistent with the experimental observations. In this sec
we use the dynamical law in Eq.~2! to study the straight to
oscillatory crack transition.

Rewriting the tangential and normal unit vectors at the
of the crack in terms of the angleu that the tangential uni
vector makes with thex axis, we obtain

t̂5 x̂ cosu1 ŷ sinu,

n̂52 x̂ sinu1 ŷ cosu, ~32!

which, upon substitution into Eq.~2!, leads to

]u

]t
52 f K II . ~33!

This equation predicts that as long asK II50, the crack
will propagate in a straight line. Nevertheless, in any r
material there exist intrinsic instabilities, due to imperfe
tions of the material and the loading conditions, which p
duce a small randomK IIÞ0. We are now facing two distinc
questions: Under what conditions, in terms of the cont
parametersDT, h, v, and 2b, does straight crack propaga
tion become unstable? Once the straight crack propaga
becomes unstable, what is the stable stationary path th
follows?

The criterion of stability arises naturally from the dynam
cal equation. Ifu and K II have the same sign, withf .0,
then ]u/]t has the opposite sign anduuu decreases, which
means that a small perturbation decays. By the same a
ment, foru andK II having the opposite sign a small pertu
bation grows. This criterion is identical to that suggested
Refs.@4,5#.

The question of the future evolution of the crack, once
instability threshold is reached, should be answered by s
ing the dynamical equation just above the onset of the in
bility. Guided by the experimental observation that the sh
of the crack just above the onset of the oscillatory instabi
is a pure sine function, we introduce a smooth deviation fr
a straight crack path

y~x,t !.A sin@w~x1vt !#1O~A3! for x<0. ~34!

This assumption serves two roles: first, it represents a si
mode component, corresponding to a wave numberw, in the
linear decomposition of a small random perturbation on
of the straight crack and will enable us, fort50, to analyze
its stability; second, it is an ansatz for the solution of t
dynamical equation just above the onset of instability. N
that y(x,t) satisfiesuy(x,t)u!1 anduy8(x,t)u!1.

In this section we will study the stability of the straig
crack as well as the time evolution of the crack after
onset of instability by analyzing the dynamical model of E
~33!. The stability is studied by applying the stability crite
rion derived above for which an expression ofK II to leading
order in the perturbation amplitude is needed. We derive
expression by introducing an auxiliary problem, the so-cal
decomposition problem, whose effective solution enab
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one to significantly simplify the derivation. The critical poin
is calculated by solving the set of equations governing
transition. The time evolution of the crack just above t
critical point is studied by directly solving the equations
motion for the tip of the crack.

A. The decomposition problem

In order to study the stability of the straight crack to sm
perturbations we arbitrarily chooset50 in Eq. ~34!. This
choice will be shown later to be legitimate. We are interes
first in finding an expression forK II to leading order in the
amplitude of the perturbation. We begin by formulating
auxiliary problem. The presence of a crack, which is usua
modeled as a mathematical branch cut, introduces the
mous square-root singularity of the stress field near the tip
the crack. We want to represent our problem as a sum of
parts. The first part contains no singularity, implying that it
crack free, but it includes the geometry of the problem a
the thermal field. The second part contains the singula
implying that there is a crack with a given load on it, but t
domain is infinite. The nonsingular part is chosen such tha
reproduces the required boundary conditions on the pla
edges and on the crack.

Once we obtain the load on the semi-infinite straig
crack in an infinite medium we can apply the classical res
of Cotterell and Rice for slightly curved cracks@13#. The
mathematical formulation of this decomposition proble
leads to a set of integro-differential equations whose co
plexity may cast doubt on the usefulness of the whole p
cedure@16#. In what follows we will show how to avoid
these mathematical difficulties and effectively solve t
problem.

To see that the solution is almost at hand, suppose f
moment that we succeeded to solve the problem in this w
for a straight crack and for a given set of the control para
eters. The load on a straight crack inan infinite domain,
which is a fictitious quantity, must be a pure mode I load
symmetry. We denote it assyy

f (x,y50;,), where we marked
explicitly the parametric dependence on,. The mode I stress
intensity factor is given by@15#

K I~, !5A2

pE2`

0 dxsyy
f ~x,y50;, !

A2x
. ~35!

Introduce now thex-Fourier transform ofsyy
f (x,y50;,),

denoted asŝyy
f (k,y50;,). With this object in mind we re-

write Eq. ~35! as

K I~, !5E
2`

` dk

2p
ŝyy

f ~k,y50;, !FA2

pE2`

0 dxe2 ikx

A2x
G .

~36!

On the other hand, we have calculated the same qua
using the Wiener-Hopf technique@see Eq.~12!#:

K I~, !5E
2`

` dk

2p
D0~k!e2 ik,F1~k!. ~37!
1-6
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DYNAMICAL INSTABILITIES OF QUASISTATI C . . . PHYSICAL REVIEW E 68, 036601 ~2003!
These two expressions forK I(,), though derived through
completely different mathematical procedures, should
identical functions of,. The , dependence of the secon
expression is given by the phase factore2 ik, which imme-
diately implies thatŝyy

f (k,y50;,)5s̃yy(k,y50)e2 ik,. We
conclude, by the uniqueness of the Fourier transform, th

s̃yy~k,y50!5
D0~k!F1~k!

FA2

p
E

2`

0 dxe2 ikx

A2x
G 5

D0~k!F1~k!

A 2

2 ik

,

~38!

which effectively solves the auxiliary problem.
Hence, we have shown how one can use the Wiener-H

solution for a traction-free straight crack in a finite config
ration in order to find the effective load on a straight crack
an infinite configuration via the solution of the decompo
tion problem. We reiterate that this load is a fictitious tens
on a crack in an infinite domain corresponding to a tracti
free situation in a finite domain. The solution of this aux
iary problem will enable us later on to use the power
tool of the complex potential method that is most suitable
an infinite domain problems. Other theoretical treatme
that were unable to solve this problem led to incorr
predictions@16#.

We comment that the approach described in this sectio
equally valid for general loading conditions, including mo
II. The generalization is straightforward, but is not need
for the present problem.

B. The critical point

The calculation now is straightforward. Let us selec
local coordinate system$r ,u% at every point on the crack
with r being the distance from the point andu being the
angle, starting withu50 for the tangent. In such coordinate
the normal opening stressTn„x,y(x,t)…[suu„x,y(x,t)… and
the tangential shearing stressTt„x,y(x,t)…[s ru„x,y(x,t)….
Using the loadsyy

f we can find these stress components
any small deviationy(x,t) from the straight crack. Applying
these loads to the classical result of Cotterell and Rice@13#,
with t50, we obtain the following expressions forK I and
K II to leading order inA ~see the Appendix!:

K I5A2

pE2`

0 dxŝyy
f ~k,y50;, !

A2x
1O~A2!,

K II~A,w,t50!52A2

pE2`

0 dx@A sin~wx!ŝyy
f ~k,y50;, !#

~2x!3/2

1
1

2
A wKI1O~A3!. ~39!

This result shows that onlyK II is changed to first order in th
amplitude of the perturbation. The expression forK II has the
general form derived in Ref.@5#. It is the sum of two com-
petitive terms which the authors of Ref.@5# refer to as a
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‘‘physical’’ shear stress which is a destabilizing term~the
first term!, and as a ‘‘geometric’’ shear stress, which is
stabilizing term~the second term!. We expect to find a range
of the control parameters for which for everywÞ0 the sec-
ond term dominates the first, leading toK II.0, which im-
plies a stable straight crack propagation. Thus, our stab
criterion states that the transition between straight and os
latory crack propagation occurs when there existA,wÞ0
such thatK II(A,w,t50)50. One concludes that the straig
crack to oscillatory crack transition is governed by the f
lowing set of equations:

K I
2~b,, !1K II

2~b,,,w!

E
.

K I
2~b,, !

E
5G,

K II~b,,,w!50,

]K II~b,,,w!

]w
50, ~40!

where we made explicit the dependence onb, ,, andw.
The first equation is the Irwin’s relation that expresses

energy balance between the elastic energy flow to the tip
the crack and the fracture energy needed to create a
crack surface. This fracture energy is a parameter of
model; in previous applications this parameter was optimi
for agreement with experiments@7#. We cannot afford such
luxury since we have determined already the paramete
Sec. II E. Therefore in our comparison with experiments
theory is truly challenged, and the agreement will be sho
to be very satisfactory.

The second and third equations express the stab
threshold. In order to characterize quantitatively this tran
tion we adopt the experimental scheme of Ref.@9#, in which
DT andh are kept fixed and for a givenv the critical width
for the the onset of oscillations,Losc, is found. Figure 5
shows a typical situation in whichK II /A is plotted as a func-
tion of w for different values of the width 2b at constantDT,
v, andh. It is shown that as one increases the width a so
tion for the equationK II(A,w,t50)50 appears.

We solved the above set of equations graphically by
following procedure. We fixedDT5135 °C andh55 mm
and for each velocity we changedb until we converged to
the solution. Note that first one has to solve the first equa
for ,. Figure 6 shows the critical width for oscillation

FIG. 5. K II /A vs the dimensionless wave numberw. For fixed
DT, v, andh, the curves from top down show the increasing of t
stored elastic energy via the increasing of the width of the plate
is clear that there is a critical width for whichK II(w)50.
1-7
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BOUCHBINDER, HENTSCHEL, AND PROCACCIA PHYSICAL REVIEW E68, 036601 ~2003!
Losc52bosc as a function of the driving velocityv. The ex-
perimental data reported in Ref.@9# have been added fo
comparison.

The deviation ofLosc from the measured data is due to
high sensitivity to the fine details of the temperature fie
which we approximated, in the absence of the measured
using the ideal baths assumption. Nevertheless, as pred

FIG. 6. The critical width for oscillationsLosc52bosc vs the
driving velocity v for DT5135 °C andh55 mm. We did not cal-
culate these quantities for still higher velocities since this regim
controlled by three-dimensional effects which are outside the sc
of our theory. The theoretical values are connected by the da
line that was added as a guide for the eye. The experimental va
that are represented by the unfilled squares were extracted from
15 in Ref.@9#. The deviation ofLosc from the measured data is du
to its high sensitivity to the fine details of the temperature fie
which we approximated, in the absence of the measured one, u
the ideal baths assumption. It is clear, as predicted in Sec. II C,
the agreement with the experiment is much better within the ad
tive regime than within the diffusive regime.
l
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et
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in Sec. II C, the agreement with the experiment is much b
ter within the advective regime, in which the temperatu
field is controlled bydth , than within the diffusive regime, in
which the temperature field is controlled byh. Our solution
here yields also the wave number of the unstable mode
Ref. @5# this wave number was identified with the wave num
ber of the actual trajectory in the post-critical conditio
without further discussion. We find this unsatisfactor
whether or not this wave number will be observed in t
actual crack trajectory also in post-critical conditions d
pends on the dynamics. If the ‘‘fastest growing mod
becomes stabilized by the nonlinear terms, then this w
number would be observed. To assess this issue we must
next to the weakly nonlinear theory in the post-critic
regime.

C. The postcritical time evolution of the crack

Crack propagation laws used in the literature so far w
unable to predict analytically nontrivial trajectories left b
hind a crack tip. The set of well-controlled experiments d
scribed here offers a challenge to any dynamical law, es
cially near the critical point where the crack exhibits a late
oscillatory motion with a well-defined wavelength and am
plitude. In this section we will show that the adopted d
namical law meets that challenge. The stationary stable p
of the crack just above the onset of the oscillatory instabi
is determined by the solution of the dynamical equation n
the transition. Noting that under our assumptionsu
.y8(0,t), we obtain

]y8~0,t !

]t
52 f K II~A,w,t !1O~A3!. ~41!

Deriving the time dependent expression forK II ~see the Ap-
pendix! and substituting our ansatz~34!, Eq. ~41! becomes

is
pe
ed
es
ig.

,
ing
at
c-
Aw2v
f

sin~wvt !5A2

pE2`

0 dx$2A sin@w~x1vt !#syy
f ~x,y50;, !%82Asin~wvt !syy8f ~x,y50;, !

A2x
1

1

2
Aw cos~wvt !K I .

~42!
ns.

the

re-
ar
the

e

This equation has a trivial solution, i.e.,A50, which is
the straight crack. An explicit calculation withAÞ0 deter-
mines that the right-hand side~RHS! of this equation is a
pure sine function. Thus our ansatz~34! can be an actua
solution only if we can choose the control parameters suc
to set the phase of the sine function to zero att50 ~cf. the
LHS!. We see that this is possible withK II(A,w,t50)50
which is exactly what was calculated above in the contex
linear stability analysis. Thus if this condition can be m
~and if A remains small above the critical point, cf. Se
III D ! we can indeed identify the aforementioned wave nu
ber as the wave number of the oscillations in the close vic
ity of the critical point. We conclude that the equation
motion ~33! is consistent with a pure sinusoidal trajecto
as

f
,
.
-
-

,

which is anexact solution of the post-criticaldynamics. This
is in good agreement with the experimental observatio
This result also shows that the arbitrary choicet50 in the
linear stability analysis is legitimate since one has to fix
phase only at one time point.

Figure 7 shows the wavelength of the oscillationslosc
52p/wosc as a function of the driving velocityv. The criti-
cal width for oscillationsLosc52bosc, first shown in Fig. 6,
was added for completeness, while the experimental data
ported in Ref.@9# have been added for comparison. It is cle
that the wavelength of oscillations agrees rather well with
experimental data, which confirms the assertion in Ref.@9#
that the oscillation wavelengthlosc seems far less sensitiv
to the fine details of the temperature field thanLosc.
1-8
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DYNAMICAL INSTABILITIES OF QUASISTATI C . . . PHYSICAL REVIEW E 68, 036601 ~2003!
As we have indicated before, there are several relev
length scales in the problem. Here we have calculate
quantity that has the dimension of length and we wanted
explore its dependence on the various length scales in
problem. Therefore, we have calculated the dimension
oscillation wavelengthlosc/Losc at the threshold of instabil
ity as a function of the dimensionless thermal diffusi
length dth /Losc. The results are shown in Fig. 8. We ha
found that within the advective regime, which corresponds
relatively high velocities, this function can be well fitted b
the linear scaling lawlosc/Losc.a1bdth /Losc with a
50.12 andb52.1, to be compared with the experimen

FIG. 7. The wavelength of the oscillationslosc52p/wosc vs the
driving velocity v for DT5135 °C andh55 mm. The theoretical
values are connected by the dashed lines that were added as g
for the eye. The experimental points that are represented by
unfilled points were extracted from Fig. 15 in Ref.@9#. The results
of Fig. 6 were superimposed for completeness. The wavelengt
oscillationslosc seems far less sensitive to the fine details of
temperature field thanLosc.

FIG. 8. Dimensionless oscillation wavelengthlosc/Losc at the
threshold of instability as a function of the dimensionless therm
diffusion lengthdth /Losc. It is seen that within the advective re
gime the values can be well fitted by a straight line. This res
shows that the scaling betweenlosc and Losc is controlled by the
thermal diffusion length.
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values ofa50.15 andb52.5 @9# and the FEM simulation
values ofa50.14 andb52.1 @17#. This result shows tha
the scaling betweenloscandLosc is controlled by the therma
diffusion length.

Up to now we have dealt with the matching of the phas
of both sides of Eq.~42!. The matching of the amplitude
will enable us to calculate the functionf. We stress that cal-
culating f is not related to the comparison with the expe
ment which is exhausted by the matching of the phases.

The RHS of Eq.~42!, at the critical point, has the form

AEaTDTAboscA* sin~woscvosct !, ~43!

whereA* is a dimensionless amplitude to be calculated.
equating the amplitudes of both sides of Eq.~42! we obtain

f 5
wosc

2 vosc

EaTDTAboscA*
. ~44!

The functionf determines the decay length of perturbatio
with finite K II back to a pure mode I propagation in th
straight crack regime. A typical length is constructed fro
vosc/g, whereg[ f EaTDTAbosc. Figure 9 showsvosc/g ~in
units of bosc) as a function ofvosc for velocities in the ad-
vective regime where the theory agrees with the experim
It is seen that this length~in units of bosc) decreases as th
velocity increases. Assuming that this behavior is not se
tive to the details of the temperature field, it is a challenge
any theory that will suggest an independent derivation of.
Note that in this calculationf turns out to be velocity depen
dent. This is not unreasonable sincef is expected on genera
grounds to be a function ofK I andK II

2 @11#. It is not impos-
sible however that the velocity dependence is an artifac
the ideal baths assumption, similar to the influence onG
reported in Ref.@7#.

ides
he

of
e

l
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FIG. 9. vosc/(gbosc) as a function ofvosc for velocities in the
advective regime, whereg[ f EaTDTAbosc.
1-9
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D. The critical exponents of the amplitude of oscillations

In the previous sections we discussed how the solution
the equation of motion changes its nature from anA50 so-
lution to anAÞ0 solution, but since we considered all th
relevant quantities toO(A) we could not study the propertie
of the amplitude itself. In order to extend our analysis
should introduce a time dependent amplitude in our ansa

y~x,t !5A~x1vt !sin@w~x1vt !# ~45!

and write the equation of motion toO(A3). The orientation
of the tip of the crack is given by

u~ t !5tg21@y8~x50,t !#.y8~x50,t !2
y83~x50,t !

3
,

~46!

which upon substitution of our ansatz becomes

u~ t !.wA~vt !cos~wvt !1A8~vt !sin~wvt !

2
1

3
@wA~vt !cos~wvt !1A8~vt !sin~wvt !#3,

~47!

where the prime denotes a derivative with respect to the
gumentvt. Because of the symmetryA→2A the next order
term in the expansion ofK II in powers ofA is of O(A3).
Thus,

K II.K II
(1)$A~x1vt !sin@w~x1vt !#%

1K II
(3)$A~x1vt !sin@w~x1vt !#%1O~A5!,

~48!

where K II
(1)$•% is the functional that was calculated in th

Appendix, being ofO(A). K II
(3)$•% is a functional whose

derivation is straightforward but very lengthy; we do n
present it explicitly here, but note that it yields a ter
of O(A3).

In order to proceed we assume that our problem exhi
separation of time scales; the amplitude changes on a
cal time that is much longer than the period of oscil
tions. Hence, we can substitute the expressions foru andK II

into the equation of motion, cf. Eq.~33!, and operate on
both sides of the equation with the operat
wv/2p*0

2p/wv$•%sin(wvt)dt to obtain
03660
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2vw2A/21vw4A3/82vw2AA82/81vA9/22vw2A2A9/8

23vA82A9/8

52
f wv
2p E

0

2p/wv
K II

1$A~x1vt !sin@w~x1vt !#%

3sin~wvt !dt2
f wv
2p

3E
0

2p/wv
K II

3$A~x1vt !sin@w~x1vt !#%sin~wvt !dt.

~49!

This is a highly nontrivial integro-differential equation fo
the time evolution of the amplitudeA. We expect that after a
transient the amplitude saturates to a fixed value. Theref
we set all the derivatives to zero and the amplitude equa
reduces to

2vw2A/21vw4A3/8

52
f wv
2p E

0

2p/wv
K II

(1)$A sin@w~x1vt !#%sin~wvt !dt

2
f wv
2p E

0

2p/wv
K II

(3)$A sin@w~x1vt !#%sin~wvt !dt.

~50!

If we consider one of the control parameters sligh
above its critical value, e.g., the velocity, and expand all
terms around the critical point we obtain

2wosc
2 A/22ev~wosc

2 12voscwosc]vwosc!A/21wosc
4 A3/8

52 f AKII
(1)$A sin@wosc~x1vosct !#%/2vosc

1a~vosc!evA1b~vosc!A
3.

Hereev[(v2vosc/vosc) is the critical parameter,a(vosc) is
the coefficient of a critical linear term related t
]vK II

(1)$A sin@wosc(x1vosct)#%, b(vosc) is the coefficient of
the noncritical cubic term, and we neglected terms
O(evA3). The linearnoncritical terms cancel out since thes
are just the equation toO(A). Therefore, we are left with

05@~wosc
2 12voscwosc]vwosc!/21a~vosc!#evA

1@2wosc
4 /81b~vosc!#A

3, ~51!

where ]vwosc.0 since as we increase the velocity we i
crease the energy flow to the crack tip which requires m
crack surface created per unit time. The instability is tan
mount to a positive linear coefficient. Weassumethat the
cubic term leads to saturation. It follows that

A5
~wosc

2 12voscwosc]vwosc!/21a~vosc!

wosc
4 /82b~vosc!

ev
1/2. ~52!
1-10



e

hi
u

tri

e
th
ls

h

us
na
on
t
a
on
th
ili
na
m

a
th
iz
hs
r

a
a
riv
e
n
g

w

lu-
nts
The
tip
ese
the

fro-
do
d to
he

be
of

ally
nd

t in
ale
s-
c-

to
e
e of
ible

i-
be

of

s,
be

um
ny;

-
po-

ck
der

DYNAMICAL INSTABILITIES OF QUASISTATI C . . . PHYSICAL REVIEW E 68, 036601 ~2003!
This result shows that the critical exponent with respect toev
is 1/2, in agreement with the experimental data@8#. A similar
calculation can be presented for the dependence ofA on
eDT[(DT2DTosc)/DTosc. Such a calculation results in th
same exponent 1/2 as observed in the experiment.

Two comments are in order. First, wederivedthe ampli-
tude equation from the dynamics of the tip, Eq.~33!, rather
than guess it as in previous works. More stamina can
principle lead to an actual calculation of the last term in t
equation. Second, we have projected the full amplitude eq
tion onto its asymmetric part. Projecting onto the symme
~cosine! part yields the equation

vwA82vw3A2A8/22vwA83/42vwAA8A9/4

52
f wv
2p E

0

2p/wv
K II

(1)$A~x1vt !sin@w~x1vt !#%

3cos~wvt !dt2
f wv
2p

3E
0

2p/wv
K II

(3)$A~x1vt !sin@w~x1vt !#%cos~wvt !dt.

~53!

Discarding again, for the stationary state, all the derivativ
we see that we do not gain any new information about
stationary amplitude. On the other hand, we learn that a
the last term is a pure sine function, since it has to vanis
the critical point exactly like theK II

(1) term.

IV. CONCLUDING REMARKS

The main point of departure of our theory from previo
ones is that we employ, in addition to the two-dimensio
linear elasticity part, the dynamical crack-tip propagati
law suggested in Ref.@11#. Using this dynamical law we firs
derived a stability criterion for the straight crack propag
tion, which is identical to a previously suggested criteri
@4,5#. We then extended the analysis to the evolution of
crack shape just above the onset of the oscillatory instab
and showed that the dynamical equation has a statio
sinusoidal solution with a theoretically calculated wave nu
ber. We should stress at this point that this trajectoryevolves
with KIIÞ0 except at isolated points. Thus the ‘‘principle of
local symmetry’’ is shown to be insufficient as a dynamic
criterion. We presented a quantitative comparison with
experimental data for a temperature field that is character
both by the spatial separation between the thermal bath
and the thermal diffusion lengthdth . Our results agree rathe
well with the experiments@9#.

From the conceptual point of view we have offered
successful way to decompose the problem into a singular
a nonsingular part. This decomposition enabled us to de
an expression forK II to leading order in the amplitude of th
oscillations that depended only on the factorization of o
Wiener-Hopf kernel. This factorization is done by applyin
the method of Pade´ approximants suggested recently@12#.
Finally, we showed how the dynamical tip propagation la
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translates to an amplitude equation for the oscillatory so
tion. This equation resulted in calculated critical expone
of the transition, in agreement with the measured ones.
success of the dynamical theory based on the law of
propagation lends strong support to this law, at least in th
quasistatic conditions. One should stress at this point that
analysis considered the temperature field as effectively
zen. The oscillatory nature of the crack has very little to
with the temperature dynamics. This cannot be expecte
remain valid for larger amplitudes of oscillations since t
boundary condition restricts the temperature level sets to
normal to the crack. Thus at some point the dynamics
the temperature field must enter the discussion, potenti
leading to new dynamic instabilities including chaos a
disorder.

In fact, the conclusion of this study appears to be tha
the quasistatic conditions the assumption of small sc
yielding holds, making it sufficient to solve the linear ela
ticity problem, coupled to a correct law of motion that di
tates how the tip propagates. It would be interesting to try
apply this or similar laws to other contexts in which th
quasistatic problem can be solved, but where the absenc
an accepted propagation law has led to a number of poss
evolutions@18,19#. We expect however that in truly dynam
cal crack propagation new theoretical concepts need to
developed in order to reach a similar level of calculation
experimental observations.
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APPENDIX: SLIGHTLY CURVED CRACKS

The aim of this appendix is to derive Eqs.~39! and ~42!.
Assume that we have a mode I loadsyy(x,0) on a semi-
infinite crack whose tip is atx50. Let us first find the nor-
mal opening stressTn„x,y(x,t)… and tangential shearing
stress Tt„x,y(x,t)… on any small deviationy(x,t) from
straight crack in terms ofsyy(x,0). The cartesian compo
nents of the stress tensor field are related to polar com
nents according to

sxx5s rr cos2u1suu sin2u2s ru sin 2u,

syy5s rr sin2u1suu cos2u1s ru sin 2u,

sxy5~s rr 2suu! sin~2u!/21s ru cos 2u. ~A1!

Here u is the local angle made by the tangent to the cra
and thex axis. These relations can be expanded to first or
in u.y8(x,t) and then inverted to yield

Tn„x,y~x,t !…5suu„x,y~x,t !…

5syy„x,y~x,t !…22y8~x,t !sxy„x,y~x,t !…,

~A2!
1-11
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Tt„x,y~x,t !…5s ru„x,y~x,t !…5sxy„x,y~x,t !…1y8~x,t !

3@syy„x,y~x,t !…2sxx„x,y~x,t !…#.

Expanding the cartesian components to first order iny(x,t)

syy„x,y~x,t !…5syy~x,0!1]ysyy~x,0!y~x,t !,

sxy„x,y~x,t !…5sxy~x,0!1]ysxy~x,0!y~x,t !, ~A3!

and using the relation

]ysxy~x,0!5]y~2]x]yx!52]x]y]yx52sxx8 ~x,0!,
~A4!

we end up with

Tn„x,y~x,t !…5syy~x,0!,

Tt„x,y~x,t !…5y8~x,t !@syy~x,0!2sxx~x,0!#

2y~x,t !sxx8 ~x,0!, ~A5!

where we used the symmetry of the problem to
sxy(x,0)50; sxx(x,0) can be calculated from the know
edge of the boundary conditionsyy(x,0).

The problem we should solve now is formulated as f
lows. Given the following crack configuration and loadin
conditions:~i! a semi-infinite crack whose shape is describ
by a small deviationy(x,t) from a straight crack configura
tion in an infinite two-dimensional domain~ii ! a normal
opening loadTn„x,y(x,t)… and a shear loadTt„x,y(x,t)… at
any point on the crack, what are the mixed mode stress
tensity factors?

A version of this problem was treated completely by C
terell and Rice@13#. They have found that the stress intens
factors for a finite slightly curved crack extending fro
2a to a, where the deviation vanishes at both tips, are giv
by

K I2 iK II5
1

Apa
E

2a

a

dx@qI~x!2 iq II~x!#Aa1x

a2x
, ~A6!

whereqI(x) andqII(x) were derived explicitly in Ref.@13#.
In order to adapt this result to our semi-infinite configurati
we should fix one tip of the crack tox50, take the limit
where the other tip goes to2`, and finally shift the origin,

ỹ~x,t !5y~x,t !2y~0,t !, ~A7!
03660
t

-

d

n-

-

n

such that the deviation vanishes as the tip of the crack at
time. This adaptation yields

K I2 iK II5A2

pE2`

0 dx@qI~x!2 iq II~x!#

A2x
, ~A8!

where

qI5Tn2 3
2 ỹ8~0,t !Tt1 ỹ~x,t !Tt812ỹ~x,t !Tt ,

qII5Tt1 ỹ~x,t !Tn81 1
2 ỹ8~0,t !Tn . ~A9!

Using the derived loading conditions of Eq.~A5! and apply-
ing these results to our ansatz fory(x,t) we obtain

qI5syy~x,0!1O~A2!,

qII5$A sin@w~x1vt !#@syy~x,0!2sxx~x,0!#%8

2A sin~wvt !syy8 ~x,0!1 1
2 Aw cos~wvt !syy~x,0!

1O~A3!. ~A10!

The last step is to relatesxx(x,0) to the boundary condi-
tion syy(x,0). According to the complex potentials metho
@15# we have for a semi-infinite straight crack

syy1sxx54 Re@F~z!# ~A11!

with

F~z!5
1

2pAz
E

2`

0 dx@syy~x,0!2 isxy~x,0!#A2x

z2x
.

~A12!

Since in our case there is no shear loading on the stra
crack we obtain

qI5syy~x,0!1O~A2!, ~A13!

qII5$2A sin@w~x1vt !#syy~x,0!%82A sin~wvt !syy8 ~x,0!

1 1
2 Aw cos~wvt !syy~x,0!1O~A3!,

which becomes, upon substitution into Eq.~A8!, the RHS of
Eq. ~42! and by settingt50 and integrating by parts give
Eqs.~39!.
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